首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4942篇
  免费   399篇
  国内免费   98篇
  2023年   86篇
  2022年   103篇
  2021年   87篇
  2020年   118篇
  2019年   175篇
  2018年   207篇
  2017年   171篇
  2016年   177篇
  2015年   211篇
  2014年   417篇
  2013年   472篇
  2012年   345篇
  2011年   472篇
  2010年   458篇
  2009年   330篇
  2008年   266篇
  2007年   246篇
  2006年   264篇
  2005年   240篇
  2004年   127篇
  2003年   97篇
  2002年   62篇
  2001年   40篇
  2000年   27篇
  1999年   38篇
  1998年   13篇
  1997年   12篇
  1996年   7篇
  1995年   3篇
  1994年   9篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1987年   3篇
  1986年   2篇
  1985年   33篇
  1984年   23篇
  1983年   3篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   7篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1974年   10篇
  1973年   7篇
排序方式: 共有5439条查询结果,搜索用时 31 毫秒
1.
  1. Download : Download high-res image (208KB)
  2. Download : Download full-size image
Highlights
  • •N-glycan patterns are distinct in pediatric and adult urine.
  • •Sex differences of N-glycans are much larger in adults.
  • •Pediatric urine has almost no sex differences in N-glycan levels.
  • •In adults, the majority of N-glycans were more abundant in males.
  相似文献   
2.
Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor–related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose–response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes.  相似文献   
3.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
4.
Steroid metabolites in urine from neonates with 21-hydroxylase deficiency are predominantly polyhydroxylated 17-hydroxyprogesterone and androgen metabolites, and most have incompletely defined structure. This study forms part of a comprehensive project to characterize and identify these in order to enhance diagnosis and to further elucidate neonatal types of steroid metabolism.Steroids were analyzed, after extraction and enzymatic conjugate hydrolysis, as methyloxime-trimethylsilyl ether derivatives on gas-chromatographs coupled to quadrupole and ion-trap mass-spectrometers. GC-MS and GC-MS/MS spectra, obtained with constant excitation conditions, were used together to determine the structure of the D-ring and the side chain of 20-oxo and 20-hydroxy pregnane(ene)s without oxo groups on the A-, B-, and C-ring.All possible combinations of D-ring and side chain configuration were considered. Most fragmentations could be interpreted as partial or complete D-ring cleavages with loss of the side chain, aided by comparison with spectra of deuterated derivatives and of borohydride reduced metabolites. Possible rearrangement ions are also discussed. More than 140 endogenous metabolites were characterized.GC-MS/MS was especially beneficial for characterization of compounds with 16,17-dihydroxy-20-oxo structure, interpreted as markers of intra-uterine enzyme induction. It also assisted the differentiation of 16-hydroxy-20-oxo metabolites, present in urine of non-affected neonates, from the diagnostic 17-hydroxy-20-oxosteroids and enabled the detection of 15,17-dihydroxy-20-oxo compounds in low concentrations. The presence of 17,21-dihydroxylated pregnane(ene)s despite the deficit in CYP21A2 is discussed.We conclude that GC-MS combined with GC-MS/MS allows reliable identification of the structure of the D-ring and side chain of pregnane(ene)s without prior isolation, even when in low concentrations in urine.  相似文献   
5.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
6.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
7.
Carcinoma tissue consists of not only tumor cells but also fibroblasts, endothelial cells or vascular structures, and inflammatory cells forming the supportive tumor stroma. Therefore, the spatial distribution of proteins that promote growth and proliferation in these complex functional units is of high interest. Matrix-assisted laser desorption/ionization imaging mass spectrometry is a newly developed technique that generates spatially resolved profiles of protein signals directly from thin tissue sections. Surface-enhanced laser desorption/ionization mass spectrometry (MS)combined with tissue microdissection allows analysis of defined parts of the tissue with a higher sensitivity and a broader mass range. Nevertheless, both MS-based techniques have a limited spatial resolution. IHC is a technique that allows a resolution down to the subcellular level. However, the detection and measurement of a specific protein expression level is possible only by semiquantitative methods. Moreover, prior knowledge about the identity of the proteins of interest is necessary. In this study, we combined all three techniques to gain highest spatial resolution, sensitivity, and quantitative information. We used frozen tissue from head and neck tumors and chose two exemplary proteins (HNP1–3 and S100A8) to highlight the advantages and disadvantages of each technique. It could be shown that the combination of these three techniques results in congruent but also synergetic data. (J Histochem Cytochem 58:929–937, 2010)  相似文献   
8.
A differential screening study using high-resolution (HR)-hydrophilic interaction chromatography (HILIC)-electrospray ionization (ESI)–quadrupole time-of-flight mass spectrometry (Q-TOF MS) was conducted to identify saxitoxin (STX) analogues in the marine dinoflagellate toxic sub-clone Alexandrium tamarense Axat-2 and the non-toxic sub-clone UAT-014-009 derived from the same Japanese isolate. One unknown compound was identified only in the toxic sub-clone and was found to have the molecular formula C9H16N6O2. This structure differed from that of decarbamoyl STX (dcSTX; C9H16N6O3) by the loss of a single oxygen. A 12-deoxy-dcSTX standard (a mixture of 12α- and β-deoxy-dcSTX) was chemically prepared from dcSTX by reduction with sodium borohydride. The unknown compound in the toxic strain of A. tamarense was identified as 12β-deoxy-dcSTX by comparison of its HR-HILIC-LC–MS retention time and HR–MS/MS spectrum with those of the chemically prepared standard, and the identification was confirmed by high-sensitivity HPLC analysis with post-column fluorescent derivatization. Moreover, two Japanese isolates of A. catenella showing toxin profiles different from that of A. tamarense were also found to contain 12β-deoxy-dcSTX. Previously, 12β-deoxy-dcSTX was isolated from the freshwater cyanobacterium Lyngbya wollei, which produces a unique set of STX analogues. This study is the first evidence of the presence of 12β-deoxy-dcSTX in marine dinoflagellates.  相似文献   
9.
Marine benthic dinoflagellates within the genus Coolia have been reported to produce natural products, some of which are known to be toxic (i.e., cooliatoxin). To date, five species of Coolia have been reported in tropical and temperate waters around the world; however, very few studies have combined detailed morphological and molecular data with chemical analyses. In this study, a clonal culture of Coolia malayensis was isolated and mass cultivated from a coral reef on the island of Okinawa, Japan. Analysis of the thecal plate morphology and molecular phylogeny from 28S rDNA strongly supported the close relationship between this new isolate of C. malayensis from Okinawa and other isolates of C. malayensis from around the world. Following methanol extraction of 250 L of mass culture, chemical analyses using NanoLiquid chromatography mass spectrometry revealed the mass profiles of water-soluble and ethyl acetate-soluble parts. High-resolution mass spectrometry derived the molecular formulas of three novel disulphated polyether analogs of yessotoxin (C56H78O18S2 1102.4 (Compound 1), C57H80O18S2 1116.4 (Compound 2), and C57H78O19S2 1130.4 (Compound 3)); two potential homologous compounds (Compounds 4 and 5) were also observed on the high-resolution mass, albeit with low signal intensity. The five compounds in the C. malayensis from Okinawa are composed of less oxygen, compared to cooliatoxin and other analogs of yessotoxin, suggesting the metabolites produced by C. malayensis are unique to those previously reported from other strains of Coolia.  相似文献   
10.
This study aimed to prepare a novel quartz crystal microbalance (QCM) sensor for the detection of pirimicarb. Pirimicarb‐imprinted poly (ethylene glycol dimethacrylate‐N‐metacryloyl‐(l )‐tryptophan methyl ester) [p (EGDMA‐MATrp)] nanofilm (MIP) on the gold surface of a QCM chip was synthesized using the molecular imprinting technique. A nonimprinted p (EGDMA‐MATrp) nanofilm (NIP) was also synthesized using the same experimental technique. The MIP and NIP nanofilms were characterized via Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy, contact angle, atomic force microscopy, and an ellipsometer. A competitive adsorption experiment on the sensor was performed to display the selectivity of the nanofilm. An analysis of the QCM sensor showed that the MIP nanofilm exhibited high sensitivity and selectivity for pirimicarb determination. A liquid chromatography‐tandem mass spectrometry method was prepared and validated to determine the accuracy and precision of the QCM sensor. The accuracy and precision of both methods were determined by a comparison of six replicates at three different concentrations to tomato samples extracted by using a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method. The limit of detection of the QCM sensor was found to be 0.028 nM. In conclusion, the QCM sensor showed good accuracy, with recovery percentages between 91 and 94%. Also, the pirimicarb‐imprinted QCM sensor exhibited a fast response time, reusability, high selectivity and sensitivity, and a low limit of detection. Therefore, it offers a serious alternative to the traditional analytical methods for pesticide detection in both natural sources and aqueous solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号